ContohSoal Luas Lingkaran (2): Hitunglah jari-jari yang mempunyai luas 200,96 cm² ! Pembahasan. Untuk menghitung diameter atau jari-jari lingkaran jika diketahui luas lingkarannya, kita gunakan cara berikut. Ilustrasi rumus luas lingkaran (Dok. Zenius) Berdasarkan soal, diketahui luas lingkaran = 200,96 cm².

BerandaKeliling bangun di bawah adalah ...PertanyaanKeliling bangun di bawah adalah ... 21 22 24 25 ELMahasiswa/Alumni Universitas Sebelas MaretJawabanjawaban yang benar adalah yang benar adalah keliling segitiga dilakukan dengan menjumlahkan ketiga sisinya. Maka keliling segitiga tersebut adalah Oleh karena itu, jawaban yang benar adalah keliling segitiga dilakukan dengan menjumlahkan ketiga sisinya. Maka keliling segitiga tersebut adalah Oleh karena itu, jawaban yang benar adalah C. Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!50Yuk, beri rating untuk berterima kasih pada penjawab soal!©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia
Isilahtitik-titik di bawah ini dengan jawaban yang tepat! Suatu persegi panjang memiliki panjang 25 cm dan lebar 10 cm, maka luasnya adalah . cm²; Luas suatu persegi panjang adalah 128 cm² . Jika panjangnya 16 cm, maka lebarnya adalah . cm. Selembar kain dengan ukuran panjang 130 cm dan lebarnya 70 cm. Keliling kain tersebut adalah
Hai adik-adik kelas 4 SD, berikut ini Osnipa akan membagikan soal bangun datar. Kali ini materi yang akan kami bahas adalah Soal Bagun Datar Persegi, Persegi Panjang, Segitiga. Semoga bermanfaat. 1. Jika panjang sisi persegi 48 cm, maka kelilingnya adalah …. cma. 142b. 162c. 182d. 192 PembahasanKeliling = 4 x sKeliling = 4 x 48Keliling = 192 cmJadi keliling persegi 192 cm 2. Sepetak sawah berbentuk persegi dengan panjang sisi 50 m. Luas sawah tersebut adalah …. cm²a. PembahasanLuas = s x sLuas = 50 x 50Luas = cm²Jadi luas sawah tersebut cm² 3. Keliling suatu bangun persegi 60 cm. Luas bangun tersebut adalah …. cm²a. 220b. 225c. 230d. 235 PembahasanSisi = Keliling 4Sisi = 60 4Sisi = 15Luas = s x sLuas = 15 x 15Luas = 225 cm²Jadi luas bangun tersebut 225 cm² 4. Sebuah persegi memiliki panjang sisi 28 cm. Luas dan keliling dari persegi tersebut adalah ….a. Luas dan keliling persegi = 784 cm² dan 112 cmb. Luas dan keliling persegi = 794 cm² dan 122 cmc. Luas dan keliling persegi = 804 cm² dan 122 cmd. Luas dan keliling persegi = 814 cm² dan 132 cm PembahasanLuas = s x sLuas = 28 x 28Luas = 784 cm²Keliling = 4 x sKeliling = 4 x 28Keliling = 112 cmJadi luas dan keliling persegi = 784 cm² dan 112 cm 5. Luas dan keliling pada bangun di bawah adalah …. a. 428 cm² dan 92 cmb. 430 cm² dan 94 cmc. 432 cm² dan 96 cmd. 434 cm² dan 98 cm PembahasanLuas = 3 x s x sLuas = 3 x 12 x 12Luas = 3 x 144Luas = 432 cm²Keliling = 8 x sKeliling = 8 x 12Keliling = 96 cmJadi luas dan keliling bangun tersebut 432 cm² dan 96 cm 6. Sebuah bangun persegi memiliki luas cm² . Panjang sisinya adalah …. cma. 22b. 28c. 32d. 38 PembahasanSisi = √LuasSisi = √ = 32 cmJadi sisi persegi 32 cm 7. Paman ingin menjual sebidang tanah berbentuk persegi dengan panjang sisi 65 m. Jika harga tanah per meter² adalah Rp maka uang yang akan didapat paman adalah ….a. Rp Rp Rp Rp PembahasanLuas tanah = s x sLuas tanah = 65 x 65Luas tanah = cm²Uang yang didapat paman = luas tanah x yang didapat paman = x yang didapat paman = Uang yang didapat paman Rp. 8. Kebun kakek berbentuk persegi berukuran panjang sisinya 75 meter. Di sekeliling kebun akan dipasang pagar dengan biaya Rp per meter. Biaya yang diperlukan untuk pemasangan pagar tersebut adalah ….a. Rp Rp Rp Rp PembahasanKeliling kebun = 4 x sKeliling kebun = 4 x 75Keliling kebun = 300 mBiaya memasang pagar = Keliling x biayaBiaya memasang pagar = 300 x memasang pagar = biaya yang diperlukan untuk pemasangan pagar Rp. 9. Di bawah ini yang bukan termasuk ciri-ciri persegi panjang adalah ….a. Keempat sudutnya siku-sikub. Keempat sisinya sama panjangc. Mempunyai 2 simetri lipatd. Mempunyai 2 simeteri putar 10. Rumus luas dan keliling persegi panjang adalah ….a. L = s x s dan K = 4 x sb. L = p x l dan K = 2 x p x lc. L = p + l dan K = 2 x p + ld. L = p x l dan K = 2 x p + l 11. Suatu persegi panjang memiliki panjang 28 cm dan lebar 9 cm, maka luasnya adalah …. cm²a. 242b. 250c. 252d. 262 PembahasanLuas = p x lLuas = 28 x 9Luas = 252 cmJadi luas persegi panjang tersebut 252 cm² 12. Luas suatu persegi panjang adalah 128 cm² . Jika panjangnya 16 cm, maka lebarnya adalah …. cma. 6b. 7c. 8d. 9 Pembahasanlebar = Luas panjanglebar = 128 16lebar = 8 cmJadi panjang persegi panjang tersebut 8 cm 13. Selembar kain dengan ukuran panjang 150 cm dan lebarnya 75 cm. Keliling kain tersebut adalah …. 450b. 475c. 500d. 510 PembahasanKeliling = 2 x p + lKeliling = 2 x 150+75Keliling = 2 x 225Keliling = 450Jadi keliling kain tersebut 450 cm 14. Keliling persegi panjang 88 cm. Jika panjangnya 26 cm, maka lebarnya adalah ….a. 12b. 14c. 16d. 18 PembahasanLebar = K-2p 2Lebar = 88-2×26 2Lebar = 88-52 2Lebar = 36 2Lebar = 18 cmJadi lebar persegi panjang tersebut 18 cm 15. Segitiga yang ketiga sisinya sama panjang disebut segitiga ….a. siku-sikub. sama kakic. sama sisid. sembarang 16. Keliling bangun di bawah adalah …. a. 21b. 22c. 24d. 25 PembahasanKeliling = a + b + cKeliling = 6 + 8 + 10Keliling = 24 cmJadi keliling bangun tersebut 24 cm 17. Panjang alas segitiga 24 cm dan tinggi 18 cm. Luas segitiga tersebut adalah …. cm²a. 196b. 208c. 216d. 232 PembahasanLuas = a x t 2Luas = 24 x 18 2Luas = 432 2Luas = 216 cm²Jadi luas segitiga tersebut 216 cm² 18. Sebuah papan reklame berbentuk segitiga, memiliki panjang alas 65 cm dan luasnya cm², maka tingginya adalah …. cma. 50b. 52c. 54d. 55 Pembahasantinggi = L x 2 alastinggi = 1625 x 2 65tinggi = 65tinggi = 50 cmJadi tinggi papan reklame tersebut 50 cm 19. Tinggi sebuah segitiga 11 cm. Jika luasnya 66 cm², maka panjang alasnya adalah …. cma. 10b. 11c. 12d. 14 Pembahasanalas = L x 2 tinggialas = 66 x 2 11alas = 132 11alas = 12 cmJadi alas segitiga tersebut 12 cm 20. Sebuah segitiga sama kaki kelilingnya 156 cm. Jika alasnya 48 cm, maka kaki segitiga masing-masing panjangnya …. cma. 50b. 52c. 54d. 56 PembahasanKaki segitiga = Keliling – alas 2Kaki segitiga = 156 – 48 2Kaki segitiga = 108 2Kaki segitiga = 54 cmJadi panjang kaki segitiga masing-masing 54 cm Demikian Soal Bagun Datar Persegi, Persegi Panjang, Segitiga dan Pembahasan. Semoga bermanfaat. Pengunjung 11,185
ContohSoal Menghitung Luas Dan Keliling Persegi Beserta Jawabannya. 1. Diketahui sebuah persegi mempunyai panjang sisi 10 cm. Hitunglah berapa luas dan keliling persegi tersebut! Penyelesaian : Rumus luas persegi adalah L = s × s. L = s × s. L = 10 × 10. L = 100 cm 2. Jadi, luas persegi tersebut adalah 100 cm 2.
Hallo anak-anakku sekalian... hari ini kita mau belajar tentang keliling dan luas bangun datar ya.. yuk kita mulai..1. Keliling bangun persegi ABCD di bawah adalah...a. 40 cmb. 48 cmc. 80 cmd. 88 cmJawabPanjang sisi = s = 12 cmKeliling persegi = 4 x sisi = 4 x 12 cm = 48 cmJawaban yang tepat Keliling persegi panjang EFGH yang berukuran panjang 13 cm dan lebar 9 cm adalah...a. 48 cmb. 44 cmc. 28 cmd. 24 cmJawabKeliling persegi panjang = 2 x panjang + lebar = 2 x 13 cm + 9 cm = 2 x 22 cm = 44 cmJawaban yang tepat Jika keliling suatu persegi 96 cm, maka panjang setiap sisinya adalah...a. 12 cmb. 18 cmc. 20 cmd. 24 cmJawabPanjang sisi persegi = keliling 4 = 96 cm 4 = 24 cmJawaban yang tepat Diketahui bangun di bawah kelilingnya 56 cm. Panjang sisi QR sama dengan...a. 28 cmb. 24 cmc. 18 cmd. 16 cmJawabPanjang QR = keliling 2 – panjang SR = 56 cm 2 – 10 cm = 28 cm – 10 cm = 18 cmJawaban yang tepat Bangun-bangun di bawah ini memiliki keliling yang sama, kecuali...JawabKita cari kelilingnya satu persatuPilihan a, keliling = 4 x 8 cm = 32 cmPilihan b, keliling = 2 x 8 cm + 6 cm = 2 x 14 cm = 28 cmPilihan c, keliling = 2 x 10 cm + 6 cm = 2 x 16 cm = 32 cmPilihan d, keliling = 10 cm + 14 cm + 8 cm = 32 cmJadi, yang berbeda kelilingnya adalah pilihan Diketahui panjang salah satu sisi bangun persegi panjang 12 dm. Jika kelilingnya 60 dm, maka panjang sisi lainnya adalah...a. 18 cmb. 18 dmc. 18 md. 18 damJawabPanjang sisi yang lain = keliling 2 – 12 dm = 60 dm 2 – 12 dm = 30 dm – 12 dm = 18 dmJawaban yang tepat Jika keliling persegi ABCD 120 cm, maka panjang sisinya adalah...a. 12 cmb. 13 cmc. 28 cmd. 30 cmJawabPanjang sisi persegi = keliling 4 = 120 cm 4 = 30 cmJawaban yang tepat Perhatikan gambar berikut!Diantara bangun persegi panjang berikut yang kelilingnya sama dengan bangun PQRS adalah...JawabKeliling bangun PQRS = 2 x 10 cm + 6 cm = 2 x 16 cm = 32 cmPilihan a, keliling = 2 x 12 cm + 5 cm = 2 x 17 cm = 34 cmPilihan b, keliling = 2 x 10 cm + 8 cm = 2 x 18 cm = 36 cmPilihan c, keliling = 2 x 12 cm + 4 cm = 2 x 16 cm = 32 cmJadi, yang memiliki keliling sama dengan bangun PQRS adalah pilihan Meja belajar Najma panjangnya 9 dm dan lebarnya 7 dm. Keliling meja belajar Najma adalah...a. 30 dmb. 32 dmc. 34 dmd. 36 dmJawabKeliling = 2 x panjang + lebar = 2 x 9 dm + 7 dm = 2 x 16 dm = 32 dmJawaban yang tepat Perhatikan pernyataan berikut!1 Persegi dengan sisi 5 cm2 Persegi panjang dengan p = 5 cm, l = 3 cm3 Persegi panjang dengan p = 6 cm, dan l = 4 cmKetiga pernyataan di atas yang mempunyai keliling sama adalah...a. 1 dan 2b. 2 dan 3c. 1 dan 3d. Tidak ada yang samaJawabPernyataan 1, keliling = 4 x 5 cm = 20 cmPernyataan 2, keliling = 2 x 5 cm + 3 cm = 2 x 8 cm = 16 cmPernyataan 3, keliling = 2 x 6 cm + 4 cm = 2 x 10 cm = 20 cmJadi, yang memiliki keliling yang sama adalah 1 dan yang tepat Diketahui lebar suatu persegi panjang 9 dm. Jika kelilingnya 44 dm, maka panjangnya adalah...a. 15 dmb. 14 dmc. 13 dmd. 12 dmJawabPanjang = keliling 2 – lebar = 44 dm 2 – 9 dm = 22 dm – 9 dm = 13 dmJawaban yang tepat Keliling sebuah persegi panjang 36 cm, jika lebarnya 11 cm, maka panjangnya adalah...a. 4 cmb. 5 cmc. 6 cmd. 7 cmJawabPanjang = keliling 2 – lebar = 36 cm 2 – 11 cm = 18 cm – 11 cm = 7 cmJawaban yang tepat Di antara bangun di bawah ini yang memiliki keliling paling kecil adalah...JawabPilihan a, keliling = 2 x 30 cm + 18 cm = 2 x 48 cm = 96 cmPilihan b, keliling = 3 x 27 cm = 81 cmPilihan c, keliling = 4 x 21 cm = 84 cmPilihan d, keliling = 2 x 28 cm + 25 cm = 2 x 53 cm = 106 cmJadi, yang memiliki keliling paling kecil adalah Luas bangun persegi panjang ABCD di bawah adalah...a. 778 cm2b. 779 cm2c. 789 cm2d. 798 cm2JawabLuas persegi panjang = panjang x lebar = 38 cm x 21 cm = 798 cm2Jawaban yang tepat Jika panjang persegi panjang 18 cm dengan luas 486 cm2, maka lebarnya adalah...a. 25 cmb. 26 cmc. 27 cmd. 28 cmJawabLebar = luas panjang = 486 cm2 18 cm = 27 cmJawaban yang tepat Jika persegi panjang PQRS memiliki panjang 11 cm dan lebar 4 cm, maka luasnya...a. 42 cm2b. 44 cm2c. 46 cm2d. 48 cm2JawabLuas = panjang x lebar = 11 cm x 4 cm = 44 cm2Jawaban yang tepat Jika panjang setiap sisi suatu persegi 15 cm, maka luasnya adalah...a. 225 cm2b. 250 cm2c. 275 cm2d. 625 cm2JawabLuas persegi = sisi x sisi = 15 cm x 15 cm = 225 cm2Jawaban yang tepat Suatu persegi panjang berukuran panjang 8 cm dan lebar 9 cm. Di antara persegi berikut yang lebih luas daripada persegi panjang tersebut adalah... JawabLuas persegi panjang = 8 cm x 9 cm = 72 cm2Pilihan a, Luas = 6 cm x 6 cm = 36 cm2Pilihan b, Luas = 9 cm x 9 cm = 81 cm2Jadi, jawaban yang lebih luas dari soal adalah Veny memiliki 2 buang bingkai foto berbentuk persegi panjang yang sama ukurannya. Jika panjang bingkai 17 cm dan lebar 12 cm, maka luas seluruh bingkai foto Veny adalah...a. 350 cm2b. 408 cm2c. 450 cm2d. 600 cm2JawabLuas seluruh bingkai = 2 x panjang x lebar = 2 x 17 cm x 12 cm = 408 cm2Jawaban yang tepat Sebuah aula di sekolah Vincent panjangnya 18 m dan lebarnya 10 m. Luas aula tersebut adalah...a. 134 m2b. 144 m2c. 162 m2d. 180 m2JawabLuas aula = panjang x lebar = 18 m x 10 m = 180 m2Jawaban yang tepat Pak Daru memiliki sebidang tanah yang berbentuk persegi dengan keliling 84 m. Luas tanah Pak Daru adalah...a. 211 m2b. 351 m2c. 441 m2d. 481 m2JawabPanjang sisi persegi = keliling 4 = 84 m 4 = 21 mLuas = sisi x sisi = 21 m x 21 m = 441 m2Jawaban yang tepat Yudi mempunyai kotak pensil berbentuk persegi panjang dengan luas 85 cm2. Jika kotak pensil tersebut lebarnya 5 cm, maka ukuran panjangnya adalah...a. 15 cmb. 17 cmc. 20 cmd. 23 cmJawabPanjang = luas lebar = 85 cm2 5 cm = 17 cmJawaban yang tepat Diketahui suatu persegi luasnya sama dengan 2 kali luas segitiga. Jika sisi persegi tersebut 16 cm, maka luas 1 segitiga adalah..a. 128 cm2b. 148 cm2c. 160 cm2d. 184 cm2JawabLuas persegi = 2 x luas segitiga16 cm x 16 cm = 2 x luas segitiga256 cm2 = 2 x luas segitigaLuas segitiga = 256 cm2 2 = 128 cm2Jawaban yang tepat Permukaan meja makan Bu Widi berbentuk persegi panjang dengan panjang 14 dm dan lebar 9 dm. Luas meja tersebut adalah...a. 96 dm2b. 116 dm2c. 126 dm2d. 158 dm2JawabLuas = panjang x lebar = 14 dm x 9 dm = 126 dm2Jawaban yang tepat Keliling segitiga ABC pada gambar di samping adalah...a. 60 cmb. 84 cmc. 88 cmd. 96 cmJawabKeliling ABC = 36 cm + 36 cm + 24 cm = 96 cmJawaban yang tepat Diketahui panjang sisi suatu segitiga sama sisi 23 cm. Keliling segitiga tersebut adalah...a. 58 cmb. 62 cmc. 69 cmd. 72 cmJawabKeliling segitiga sama sisi = 3 x sisi = 3 x 23 cm = 69 cmJawaban yang tepat Di antara bangun pada gambar berikut, yang luasnya 72 cm2 adalah...JawabPilihan a, Luas = ½ x 12 cm x 10 cm = 60 cm2Pilihan b, Luas = ½ x 19 cm x 13 cm = 123,5 cm2Pilihan c, Luas = ½ x 16 cm x 9 cm = 72 cm2Jadi, yang memiliki luas 72 cm2 adalah pilihan C. 28. Luas segitiga pada gambar di bawah adalah...a. 266 cm2b. 248 cm2c. 133 cm2d. 124 cm2JawabLuas segitiga = ½ x alas x tinggi = ½ x 19 cm x 14 cm = 133 cm2Jawaban yang tepat Diketahui luas sebuah segitiga 14 cm2 dengan panjang alasnya 4 cm. Tinggi segitiga tersebut adalah...a. 6 cmb. 7 cmc. 8 cmd. 12 cmJawabTinggi segitiga = luas segitiga ½ x alas = 14 cm2 ½ x 4 cm = 14 cm2 2 cm = 7 cmJawaban yang tepat Keliling segitiga pada gambar di bawah adalah...a. 34 cmb. 40 cmc. 48 cmd. 60 cmJawabKeliling = 20 cm + 12 cm + 16 cm = 48 cmJawaban yang tepat sampai disini ya latihan kita hari ini.. sampai bertemu di postingan selanjutnya...
Jikadigambarkan akan tampak seperti gambar di bawah ini. Alas (a) = 14 cm dan. tinggi (t) = 9 cm. Luas jajargenjang = a x t. Luas jajargenjang = 14 cm x 9 cm. Luas jajargenjang = 126 cm2. Jadi, luas jajargenjang tersebut 126 cm2. Untuk contoh soal yang lain silahkan baca contoh soal dan pembahasan keliling dan luas jajargenjang. 14+ Tips Luas Dan Keliling Pada Bangun Dibawah Adalah Terupdate. Salah satunya adalah bangun datar. Keliling bangun di bawah adalah. Penjelasan dan contoh soal lengkap tentang rumus luas trapesium dapat dibaca di artikel berikut Rumus luas dan keliling persegi panjang termasuk materi dasar dalam pembelajaran matematika. Bangun datar adalah suatu bangun geometri yang berbentuk Jika Diperhatikan Dengan Baik, Jumlah Sisi Yang Belum Diketahui Itu Sama Dengan Sisi Yang Panjanganya , Sehingga Keliling Gambar Tersebut AdalahPersegi, Persegi Panjang, Segitiga, Jajar Genjang, Trapesium, Dan Datar Adalah Suatu Bangun Geometri Yang Berbentuk = Π × R² KeteranganDengan Demikian, Luas Dan Keliling Bangun Diatas Adalah Bangun Datar Trapesium 1 2 A T Rumus Jajang Genjang Adalah Alas X Tinggi Dan Berikut Kumpulan Rumus Dari Luas Dan Kelililng Bangun Dan Contoh Soal Lengkap Tentang Rumus Luas Trapesium Dapat Dibaca Di Artikel BerikutKeliling Bangun Di Bawah Datar Adalah Suatu Bangun Geometri Yang Berbentuk dari 14+ Tips Luas Dan Keliling Pada Bangun Dibawah Adalah Terupdate. Luas dan keliling pada bangun dibawah adalah. Salah satunya adalah bangun datar. 0 rating pertanyaan serupa. Bangun datar adalah suatu bangun geometri yang berbentuk datar. Bangun datar merupakan bangunan yang rata dan hanya memiliki dua macam dimensi yakni panjang dan lebar. Dengan demikian, luas dan keliling bangun diatas adalah dan. Luas dan keliling pada bangun dibawah adalah. Rumus Bangun Datar Trapesium 1 2 A T Rumus Jajang Genjang Adalah Alas X Tinggi Dan Berikut Kumpulan Rumus Dari Luas Dan Kelililng Bangun Datar. Rumus untuk menentukan luas lingkaran adalah Penjelasan Dan Contoh Soal Lengkap Tentang Rumus Luas Trapesium Dapat Dibaca Di Artikel Berikut Teryata, jika diperhatikan dengan baik, jumlah sisi yang belum diketahui itu sama dengan sisi yang panjanganya , sehingga keliling gambar tersebut adalah Keliling Bangun Di Bawah Adalah. Bangun datar biasa dibilang bangun abstrak. Bangun Datar Adalah Suatu Bangun Geometri Yang Berbentuk Datar. Keliling bangun di bawah adalah. Penjelasan dan contoh soal lengkap tentang rumus luas trapesium dapat dibaca di artikel berikut Mengingat kembali luas daerah bangun persegipanjang adalah l = p x l sehingga jika p ditulis sebagai diperoleh. L = π × r² keterangan Pembahasan Bangun tersebut berbentuk persegi panjang dengan ukuran. Luas bangun tersebut adalah. Keliling bangun tersebut adalah. Jadi, luas bangun tersebut adalah dan kelilingnya . Mau dijawab kurang dari 3 menit? Berikut ini merupakan soal dan pembahasan terkait keliling dan luas bangun datar yang umumnya dipelajari oleh siswa kelas IV sampai VIII. Beberapa di antaranya merupakan soal yang sempat muncul saat perlombaan matematika sehingga beberapa siswa akan menganggapnya sebagai soal yang cukup menantang untuk diselesaikan. Soal juga dapat diunduh dalam format PDF melalui tautan berikut Download PDF. Khusus untuk soal mengenai keliling dan luas lingkaran, dipisahkan pembahasannya di tautan berikut. Baca Juga Soal dan Pembahasan – Lingkaran Tingkat SD Baca Juga Soal dan Pembahasan – Lingkaran Tingkat SMP Quote by Mahatma Gandhi Tolerance is the only thing that will enable persons belonging to different religions to live as good neighbours and friends. Bagian Pilihan Ganda Soal Nomor 1 Luas daerah warna kuning pada gambar adalah $5~\text{cm}^2$. Berapakah luas bangun secara keseluruhan? A. $30~\text{cm}^2$ C. $60~\text{cm}^2$ B. $45~\text{cm}^2$ D. $90~\text{cm}^2$ Pembahasan Luas persegi sama dengan dua kali dari luas daerah warna kuning. Karena ada $6$ buah persegi, maka luas bangun keseluruhan sama dengan $6 \times 2 = 12$ kali dari luas daerah warna kuning, yaitu $\boxed{L = 12 \times 5 = 60~\text{cm}^2}$ Jawaban C [collapse] Soal Nomor 2 Sebidang kebun memiliki bentuk seperti huruf L. Bentuknya tersusun dari 2 buah persegi panjang yang tidak tumpang-tindih. Kebun itu memiliki keliling $160~\text{m}$. Jika hanya ada $2$ ukuran sisi kebun tersebut, maka luas kebun sama dengan $\cdots~\text{m}^2$. A. $256$ C. $812$ B. $512$ D. $ Pembahasan Perhatikan sketsa bentuk kebun berikut. Misalkan persegi panjang yang dimaksud memiliki ukuran panjang $x$ dan lebar $y$. Karena dikatakan kebun hanya memiliki $2$ ukuran sisi, maka panjang sisi yang diberi tanda ? adalah $x$. Dengan kata lain, $y = 2x$. Diketahui keliling $k = 160~\text{m}$. Kita peroleh $$\begin{aligned} 4x + 3y & = 160 \\ 4x + 32x & = 160 \\ 10x & = 160 \\ x & = 16~\text{m} \end{aligned}$$Berarti $y = 32~\text{m}$. Luas kebun dinyatakan oleh $\boxed{L = 2xy = 2 \times 16 \times 32 = Jawaban D [collapse] Soal Nomor 3 Bangun berikut terbentuk dari $5$ persegi identik. Jika luas setiap persegi adalah $25~\text{cm}^2$, maka keliling bangun tersebut adalah $\cdots \cdot$ A. $70~\text{cm}$ C. $90~\text{cm}$ B. $80~\text{cm}$ D. $100~\text{cm}$ Pembahasan Perhatikan gambar berikut. Keliling bangun tersebut sama dengan jumlah panjang sisi yang diberi warna merah dan biru dari gambar di atas. Karena luas tiap persegi adalah $25~\text{cm}^2$, maka panjang sisinya adalah $s = \sqrt{25} = 5~\text{cm}.$ Dua ruas garis biru bila digabungkan akan memiliki panjang sisi $5$ cm. Dengan demikian, kita peroleh $$\begin{aligned} k & = 16 \times 5 + 2 \times 5 \\ & = 80 + 10 \\ & = 90~\text{cm} \end{aligned}$$Jadi, keliling bangun di atas adalah $\boxed{90~\text{cm}}$ Jawaban C [collapse] Soal Nomor 4 Perhatikan gambar berikut. Bangun datar $A, B$, dan $C$ berbentuk persegi dengan luas masing-masing secara berurutan adalah $25~\text{cm}^2$, $16~\text{cm}^2$, dan $9~\text{cm}^2$. Keliling dari gabungan ketiga persegi tersebut adalah $\cdots \cdot$ A. $30$ cm C. $34$ cm B. $32$ cm D. $36$ cm Pembahasan Diketahui $$\begin{aligned} L_A & = 25~\text{cm}^2 \\ L_B & = 16~\text{cm}^2 \\ L_C & = 9~\text{cm}^2 \end{aligned}$$Panjang sisi persegi $A, B$, dan $C$ berturut-turut adalah $$\begin{aligned} s_A & = \sqrt{25} = 5~\text{cm} \\ s_B & = \sqrt{16} = 4~\text{cm} \\ s_C & = \sqrt{9} = 3~\text{cm} \end{aligned}$$Sekarang, perhatikan gambar berikut. Jumlah panjang dari lima ruas garis merah di atas sama dengan panjang sisi persegi terbesar, yaitu $5$ cm. Keliling gabungan dari bangun tersebut adalah $$\begin{aligned} k & = 3 \times 5 + 2 \times 4 + 2 \times 3 + 5 \\ & = 15 + 8 + 6 + 5 \\ & = 34~ \text{cm} \end{aligned}$$Jawaban C [collapse] Soal Nomor 5 Persegi berikut memiliki panjang sisi $10~\text{cm}$. Sebanyak $4$ buah segitiga sama kaki yang kongruen disusun seperti gambar. Berapakah jumlah luas keempat segitiga tersebut? A. $20~\text{cm}^2$ C. $30~\text{cm}^2$ B. $25~\text{cm}^2$ D. $40~\text{cm}^2$ Pembahasan Karena panjang sisi persegi $10~\text{cm}$, maka luasnya adalah $10 \times 10 = 100~\text{cm}^2$. Apabila keempat segitiga tersebut disusun berdekatan, maka bentuknya akan menutupi $\dfrac14$ bagian dari persegi sehingga jumlah luasnya adalah $\dfrac14 \times 100 = 25~\text{cm}^2$. Jawaban B [collapse] Soal Nomor 6 Persegi panjang $PQRS$ dibagi dalam $6$ persegi yang sama besar dan diarsir seperti tampak pada gambar. Perbandingan luas daerah yang diarsir terhadap luas persegi panjang $PQRS$ adalah $\cdots \cdot$ A. $1 12$ C. $5 12$ B. $1 6$ D. $1 2$ Pembahasan Bila dibelah menurut diagonalnya, satu persegi terdiri dari 2 bagian yang sama luasnya. Daerah yang diarsir terdiri dari 5 bagian, sedangkan secara keseluruhan, persegi panjang $PQRS$ yang disusun dari $6$ persegi terdiri dari $6 \times 2 = 12$ bagian. Jadi, dapat disimpulkan bahwa perbandingan luas daerah yang diarsir terhadap luas persegi panjang $PQRS$ adalah $\boxed{5 12}$ Jawaban C [collapse] Soal Nomor 7 Panjang sisi suatu persegi adalah $4~\text{cm}$. Jika panjang diagonalnya sama dengan panjang sisi persegi yang lain, maka luas persegi lain yang dimaksud tersebut adalah $\cdots \cdot$ A. $24~\text{cm}^2$ C. $32~\text{cm}^2$ B. $28~\text{cm}^2$ D. $36~\text{cm}^2$ Pembahasan Perhatikan gambar berikut. Luas segitiga siku-siku daerah warna kuning adalah $L_{\triangle} = \dfrac{4 \times 4}{2} = 8~\text{cm}^2.$ Luas persegi yang lain sama dengan $4$ kali dari luas segitiga siku-siku tersebut, yaitu $L = 4 \times L_{\triangle} = 4 \times 8 =32~\text{cm}^2.$ Jawaban C [collapse] Soal Nomor 8 Luas persegi panjang $ABCD$ pada gambar adalah $60~\text{cm}^2$ dengan panjang $BC = 6~\text{cm}$. Jika diketahui bahwa $CQ = RD = 2~\text{cm}$, berapakah luas daerah berwarna kuning? A. $18~\text{cm}^2$ C. $42~\text{cm}^2$ B. $36~\text{cm}^2$ D. $52~\text{cm}^2$ Pembahasan Karena luas persegi panjang $ABCD$ adalah $60~\text{cm}^2$ dan $BC = 6~\text{cm}$, maka $AB = CD = \dfrac{60}{6} = 10~\text{cm}$. Dengan demikian, panjang $RQ = 10-2-2 = 6~\text{cm}.$ Perhatikan gambar berikut. Luas daerah berwarna kuning sama dengan luas persegi panjang $ABCD$ dikurangi luas segitiga $PQR$. $$\begin{aligned} L & = L_{ABCD}-L_{\triangle PQR} \\ & = 60-\dfrac{6 \times 6}{2} \\ & = 60-18 = 42~\text{cm}^2 \end{aligned}$$Jadi, luas daerah warna kuning adalah $\boxed{42~\text{cm}^2}$ Jawaban C [collapse] Soal Nomor 9 Pada gambar di bawah, sebuah garis membelah persegi panjang menjadi dua bagian yang luasnya berbanding $1 6$. Berapakah perbandingan $a b$? A. $2 5$ C. $1 5$ B. $1 6$ D $1 4$ Pembahasan Anggap luas persegi panjang sama dengan $1+6 = 7$. Tarik garis diagonal persegi panjang seperti gambar di bawah. Perhatikan bahwa segitiga yang luasnya $1$ dan $2,5$ di atas memiliki tinggi yang sama sehingga panjang alasnya memiliki perbandingan yang sama dengan besar luasnya, yaitu $a b = 1 2,5 = 2 5$. Jawaban A [collapse] Soal Nomor 10 Dua buah persegi dengan luas $m$ dan $n$ terletak di dalam persegi besar seperti gambar di bawah. Berapakah perbandingan $m n$? A. $4 3$ C. $9 8$ B. $4 5$ D. $8 9$ Pembahasan Tarik garis yang membelah bagian persegi dengan ukuran yang sama. Pada daerah di atas diagonal, terdapat 9 segitiga siku-siku dan 4 di antaranya menempati daerah dengan luas $m$. Jadi, $m = 4 9 = \dfrac49$. Pada daerah di bawah diagonal, terdapat 4 segitiga siku-siku dan 2 di antaranya menempati daerah dengan luas $n$. Jadi, $n = 2 4 = \dfrac12$. Dengan demikian, $$\begin{aligned} m n & = \dfrac49 \dfrac12 && \cdots \times 18 \\ & = 8 9 \end{aligned}$$Jadi, perbandingan $\boxed{m n = 8 9}$ Jawaban D [collapse] Soal Nomor 11 Gambar di bawah merupakan dua buah persegi dengan panjang sisinya masing-masing berukuran $12~\text{cm}$ dan $8~\text{cm}$. Luas daerah yang diarsir adalah $\cdots \cdot$ A. $34~\text{cm}^2$ C. $56~\text{cm}^2$ B. $48~\text{cm}^2$ D. $72~\text{cm}^2$ Pembahasan Luas daerah yang diarsir sama dengan jumlah luas kedua persegi dikurangi jumlah kedua segitiga siku-siku yang diberi warna pada gambar berikut. $$\begin{aligned} L_{\text{Arsir}} & = 12 \times 12 + 8 \times 8-\dfrac12 \times \left12 \times 12 + 12 + 8 \times 8\right \\ & = 144 + 64-\dfrac12 \times 144 + 160 \\ & = 208-152 \\ & = 56~\text{cm}^2 \end{aligned}$$Jadi, luas daerah yang diarsir adalah $\boxed{56~\text{cm}^2}$ Jawaban C [collapse] Soal Nomor 12 Berikut merupakan gambar sebuah persegi panjang dan sebuah persegi. Luas daerah yang diarsir adalah $\cdots~\text{cm}^2$. A. $8,5$ C. $10,5$ B. $9,5$ D. $11,5$ Pembahasan Posisikan titik $O$ sehingga terbentuk segitiga siku-suku $AOF$ seperti gambar. Luas daerah yang diarsir, yaitu luas segitiga $ACF$, sama dengan luas persegi panjang $ABEO$ dikurangi luas segitiga siku-siku $ABC$, $CEF$, dan $AOF$. $$\begin{aligned} L_{\triangle ACF} & = L_{ABEO}-L_{\triangle ABC} + L_{\triangle CEF} + L_{\triangle AOF} \\ & = 6 \times 4-\dfrac12 \times 3 \times 4 + 3 \times 3 + 1 \times 6 \\ & = 24-\dfrac12 \times 12 + 9 + 6 \\ & = 24-\dfrac12 \times 27 \\ & = 24-13,5 =10,5 \end{aligned}$$Jadi, luas daerah yang diarsir adalah $\boxed{10,5~\text{cm}^2}$ Jawaban C [collapse] Baca Juga Pembuktian Rumus Dasar Luas Segitiga Soal Nomor 13 Terdapat persegi panjang $PQRS$ berukuran $24~\text{cm} \times 16~\text{cm}.$ Titik $T, U, V$, dan $W$ terletak pada sisi persegi panjang dengan jarak yang tercantum pada gambar di bawah dalam satuan cm. Luas daerah yang diarsir adalah $\cdots \cdot$ A. $240~\text{cm}^2$ C. $300~\text{cm}^2$ B. $280~\text{cm}^2$ D. $320~\text{cm}^2$ Pembahasan Luas daerah yang diarsir dapat dihitung dengan cara mengurangkan luas persegi panjang $PQRS$ dengan jumlahan luas 4 segitiga siku-siku di dalamnya. Pada $\triangle WSV$, diketahui $WS = 16-2=14~\text{cm}$ dan $SV = 3~\text{cm}$ sehingga $L_{\triangle WSV} = \dfrac{14 \cdot 3}{2} = 21~\text{cm}^2.$ Pada $\triangle PWT$, diketahui $PT = 24-3=21~\text{cm}$ dan $PW = 2~\text{cm}$ sehingga $L_{\triangle PWT} = \dfrac{21 \cdot 2}{2} = 21~\text{cm}^2.$ Pada $\triangle TQU$, diketahui $QU = 16-2=14~\text{cm}$ dan $TQ = 3~\text{cm}$ sehingga $L_{\triangle TQU} = \dfrac{14 \cdot 3}{2} = 21~\text{cm}^2.$ Pada $\triangle URV$, diketahui $VR = 24-3=21~\text{cm}$ dan $UR = 2~\text{cm}$ sehingga $L_{\triangle URV} = \dfrac{14 \cdot 3}{2} = 21~\text{cm}^2.$ Dengan demikian, luas daerah yang diarsir adalah $$\begin{aligned} L_{\text{arsir}} & = L_{PQRS}-L_{\triangle WSV} + L_{\triangle PWT} + L_{\triangle TQU} + L_{\triangle URV} \\ & = 24 \times 16-21 + 21 + 21 + 21 \\ & = 384-84 = 300~\text{cm}^2 \end{aligned}$$Jawaban C [collapse] Soal Nomor 14 Terdapat segitiga $DCE$ dan jajar genjang $ABCD$ seperti tampak pada gambar. Luas jajar genjang $ABCD$ adalah $54~\text{cm}^2$, sedangkan luas segitiga $DCE$ adalah $45~\text{cm}^2$. Tinggi segitiga jika alasnya $CD$ adalah $\cdots \cdot$ A. $8$ cm C. $12$ cm B. $10$ cm D. $15$ cm Pembahasan Perhatikan bahwa $CD$ merupakan alas jajar genjang, sekaligus alas segitiga. Karena luas jajar genjang $ABCD$ adalah $54~\text{cm}^2$, maka $CD = \dfrac{54}{6} = 9~\text{cm}$. Diketahui luas segitiga $DCE$ adalah $45~\text{cm}^2$ sehingga $$\begin{aligned} L_{\triangle DCE} & = \dfrac12 \times CD \times t \\ 45 & = \dfrac12 \times 9 \times t \\ t & = \dfrac{45 \times 2}{9} = 10~\text{cm} \end{aligned}$$Jadi, tinggi segitiga tersebut jika alasnya $CD$ adalah $\boxed{10~\text{cm}}$ Jawaban B [collapse] Baca Juga Soal dan Pembahasan – Sistem Koordinat Kartesius Soal Nomor 15 Sebuah jajar genjang $ABCD$ memiliki panjang alas $14$ cm dan tinggi $10$ cm. Jika luas segitiga $BFC$ adalah $50~\text{cm}^2$, maka luas segitiga $FDC$ adalah $\cdots \cdot$ A. $50~\text{cm}^2$ C. $20~\text{cm}^2$ B. $30~\text{cm}^2$ D. $15~\text{cm}^2$ Pembahasan Perhatikan bahwa luas segitiga $BCD$ sama dengan setengah kalinya dari luas jajar genjang $ABCD$. $$\begin{aligned} L_{\triangle BCD} & = \dfrac12 \times L_{ABCD} \\ & = \dfrac12 \times 14 \times 10 \\ & = 70~\text{cm}^2 \end{aligned}$$Karena diketahui luas segitiga $BFC$ adalah $50~\text{cm}^2$, maka $$\begin{aligned} L_{\triangle FDC} & = L_{\triangle BCD}-L_{\triangle BFC} \\ & = 70-50 = 20~\text{cm}^2 \end{aligned}$$Jadi, luas segitiga $FDC$ adalah $\boxed{20~\text{cm}^2}$ Jawaban C [collapse] Soal Nomor 16 Gambar berikut adalah persegi panjang berukuran $12~\text{cm} \times 6~\text{cm}$. Luas daerah yang berwarna kuning adalah $\cdots~\text{cm}^2.$ A. $36$ C. $18$ B. $24$ D. $12$ Pembahasan Dari gambar, tampak ada $6$ buah segitiga yang jumlah panjang alasnya sama dengan $12$ cm. Tinggi tiap segitiga adalah $3$ cm. Tanpa perlu mencari luas segitiga masing-masing, kita cukup menggunakan fakta tersebut untuk menentukan jumlah luas segitiga, yaitu $$\begin{aligned} L & = \dfrac12 \times \text{Jumlah Alas} \times t \\ & = \dfrac12 \times 12 \times 3 = 18~\text{cm}^2 \end{aligned}$$Jadi, luas daerah yang berwarna kuning adalah $\boxed{18~\text{cm}^2}$ Jawaban C [collapse] Soal Nomor 17 Seperti yang tampak pada gambar di bawah, luas $\triangle BEG$ dan $\triangle CFG$ berturut-turut adalah $2017~\text{cm}^2$ dan $1221~\text{cm}^2$. Luas daerah yang diarsir adalah $\cdots \cdot$ A. $796~\text{cm}^2$ C. $3238~\text{cm}^2$ B. $1619~\text{cm}^2$ D. $6476~\text{cm}^2$ Pembahasan Perhatikan $\triangle BEG$ dan $\triangle CFG$ pada gambar. Jumlah panjang alasnya sama dengan panjang dari persegi panjang tersebut, yaitu $BG + GC = BC$, sedangkan tinggi kedua segitiga itu sama, yaitu $AB = CD$. Dengan demikian, kita peroleh $$\begin{aligned} L_{\triangle BEG} + L_{\triangle CFG} & = 2017 + 1221 \\ \dfrac{BC \times AB}{2} & = 3238 \\ L_{ABCD} & = 6476~\text{cm}^2 \end{aligned}$$Karena luas daerah yang diarsir sama dengan luas persegi panjang $ABCD$ dikurangi luas kedua segitiga tersebut, maka diperoleh $\boxed{L_{\text{Arsir}} = 6476-3238 = 3238~\text{cm}^2}$ Jawaban C [collapse] Baca Juga Pembuktian Rumus Luas Jajaran Genjang dan Trapesium Soal Nomor 18 Perhatikan jajar genjang $ABCD$ berikut. $E$ dan $F$ berturut-turut adalah titik tengah $AB$ dan $BC$. Luas jajar genjang tersebut adalah $240$. Luas $\triangle DEF$ adalah $\cdots \cdot$ A. $60$ C. $90$ B. $75$ D. $120$ Pembahasan Untuk menghitung luas $\triangle DEF$, kita harus mencari luas $\triangle BEF$, $\triangle CDF$, dan $\triangle ADE$ terlebih dahulu. Misalkan $G$ dan $H$ berturut-turut adalah titik tengah $CD$ dan $AD$, sedangkan $O$ adalah titik potong ruas garis $EG$ dan $FH$. Luas $\triangle ADE$ dan $\triangle CDF$ masing-masing sama dengan $\dfrac14$ kali luas jajar genjang, sedangkan luas $\triangle BEF$ sama dengan $\dfrac18$ kali luas jajar genjang. Dengan demikian, kita peroleh $$\begin{aligned} L_{\triangle BEF} + L_{\triangle CDF}+L_{\triangle ADE} & = \dfrac18 \times 240 + \dfrac14 \times 240 + \dfrac14 \times 240 \\ & = 30 + 60 + 60 = 150 \end{aligned}$$Luas $\triangle DEF$ sama dengan luas jajar genjang dikurangi luas ketiga segitiga tersebut, yaitu $\boxed{240-150=90}$ Jawaban C [collapse] Soal Nomor 19 Perhatikan gambar berikut. Jika $AE = 2CE$, $CD = 3BD$, dan luas segitiga $ABC$ adalah $144~\text{cm}^2$, maka selisih luas segitiga $BDF$ dan segitiga $AEF$ adalah $\cdots~\text{cm}^2.$ A. $60$ C. $48$ B. $54$ D. $36$ Pembahasan Perhatikan bahwa $\triangle ABC$ di atas dibagi menjadi 4 daerah yang luasnya dimisalkan $L_1, L_2, L_3$, dan $L_4$ seperti yang tampak pada gambar. Kita akan mencari selisih luas segitiga $BDF$ dan segitiga $AEF$ , yaitu $L_4-L_2$. Pertama, akan dicari luas segitiga $BCE$. Diketahui $AE = 2CE$ sehingga $AC CE = 3 1$. Oleh karena itu, diperoleh $$\begin{aligned} L_{\triangle BCE} & = \dfrac13 \times L_{\triangle ABC} \\ L_2 + L_3 & = \dfrac13 \times 144 \\ L_2 + L_3 & = 48~\text{cm}^2 && \cdots 1 \end{aligned}$$Berikutnya, akan dicari luas segitiga $ADC$. Diketahui $CD = 3BD$ sehingga $BC DC = 4 3$. Oleh karena itu, diperoleh $$\begin{aligned} L_{\triangle ADC} & = \dfrac34 \times L_{\triangle ABC} \\ L_3 + L_4 & = \dfrac34 \times 144 \\ L_3 + L_4 & = 108~\text{cm}^2 && \cdots 2 \end{aligned}$$Dari dua persamaan di atas, kita peroleh $$\begin{aligned} L_3 + L_4-L_2 + L_3 & = 108-48 \\ L_4-L_2 & = 60~\text{cm}^2 \end{aligned}$$Jadi, selisih luas segitiga $BDF$ dan segitiga $AEF$ adalah $\boxed{60~\text{cm}^2}$ Jawaban A [collapse] Soal Nomor 20 $P$ adalah titik di dalam persegi panjang $ABCD$. Diketahui luas $APD = 92~\text{cm}^2$ dan luas $BCP$ sama dengan $27\%$ dari luas persegi panjang $ABCD$. Berapakah luas persegi panjang $ABCD$? A. $200~\text{cm}^2$ C. $400~\text{cm}^2$ B. $300~\text{cm}^2$ D. $450~\text{cm}^2$ Pembahasan Diketahui $L_{\triangle APD} = 92~\text{cm}^2$ dan $L_{\triangle BCP} = 27\% \times L_{ABCD}.$ Posisikan titik $O$ di $AD$ dan $Q$ di $BC$ sehingga $AD \perp OP$ dan $BC \perp PQ$ seperti tampak pada gambar. Perhatikan juga bahwa $AD = BC.$ Dengan demikian, kita akan peroleh $$\begin{aligned} \dfrac{AD \times OP}{2} + \dfrac{AD \times PQ}{2} & = \dfrac{AD \times OQ}{2} \\ L_{\triangle APD} + 27\% L_{ABCD} & = \dfrac{L_{ABCD}}{2} \\ 92 + 27\%L_{ABCD} & = \dfrac{L_{ABCD}}{2} \\ 184 + 54\%L_{ABCD} & = L_{ABCD} \\ 184 & = 46\%L_{ABCD} \\ L_{ABCD} & = 184 \times \dfrac{100}{46} = 400 \end{aligned}$$Jadi, luas persegi panjang $ABCD$ adalah $\boxed{400~\text{cm}^2}$ Jawaban C [collapse] Soal Nomor 21 Pada gambar di bawah, luas persegi panjang $ABCD$ adalah $200~\text{cm}^2$. Pada segitiga $HEB$, panjang alas $HE$ dan tinggi $HI$ berturut-turut adalah $9~\text{cm}$ dan $15~\text{cm}$. Jika jumlah luas segitiga $ABF$, segi empat $GBCD$, dan segi empat $HEGF$ adalah $207,5~\text{cm}^2$, maka luas segitiga $BFG$ adalah $\cdots \cdot$ A. $20~\text{cm}^2$ C. $30~\text{cm}^2$ B. $25~\text{cm}^2$ D. $50~\text{cm}^2$ Pembahasan Perhatikan bahwa $$\begin{aligned} L_{\triangle HEB} & = \dfrac{HE \times HI}{2} \\ L_{HEGF} + L_{\triangle BFG} & = \dfrac{9 \times 15}{2} \\ L_{HEGF} & = 67,5-L_{\triangle BFG} \end{aligned}$$Diketahui luas $ABCD$ sama dengan $200~\text{cm}^2.$ Dengan demikian, $$\begin{aligned} L_{\triangle ABF} + L_{\triangle BFG} + L_{GBCD} & = 200 \\ L_{\triangle ABF} + L_{GBCD} & = 200-L_{\triangle BFG} \end{aligned}$$Karena jumlah luas segitiga $ABF$, segi empat $GBCD$, dan segi empat $HEGF$ adalah $207,5~\text{cm}^2$, maka kita peroleh $$\begin{aligned} L_{\triangle ABF} + L_{GBCD} + L_{HEGF} & = 207,5 \\ 200 – L_{\triangle BFG} + 67,5-L_{\triangle BFG} & = 207,5 \\ 267,5-2L_{\triangle BFG} & = 207,5 \\ 2L_{\triangle BFG} & = 60 \\ L_{\triangle BFG} & = 30~\text{cm}^2 \end{aligned}$$Jadi, luas segitiga $BFG$ adalah $\boxed{30~\text{cm}^2}$ Jawaban C [collapse] Baca Juga Soal dan Pembahasan – Garis Singgung Lingkaran Tingkat SMP Soal Nomor 22 Gambar menunjukkan segitiga $ABC$ yang luasnya $960~\text{cm}^2$. Jika $D, E$, dan $F$ berturut-turut adalah titik tengah $AC, BC$, dan $CE$, maka luas daerah yang diarsir adalah $\cdots \cdot$ A. $720~\text{cm}^2$ C. $540~\text{cm}^2$ B. $600~\text{cm}^2$ D. $480~\text{cm}^2$ Pembahasan Diketahui $L_{\triangle ABC} = 960~\text{cm}^2.$ Karena $D$ di tengah $AC$, maka $$\begin{aligned} L_{\triangle ABD} = L_{\triangle BCD} & = \dfrac12 \times L_{\triangle ABC} \\ & = \dfrac12 \times 960 \\ & = 480~\text{cm}^2 \end{aligned}$$Karena $E$ di tengah $BC$, maka $$\begin{aligned} L_{\triangle CDE} = L_{\triangle BDE} & = \dfrac12 \times L_{\triangle BCD} \\ & = \dfrac12 \times 480 \\ & = 240~\text{cm}^2 \end{aligned}$$Karena $F$ di tengah $CE$, maka $$\begin{aligned} L_{\triangle CDF} = L_{\triangle DEF} & = \dfrac12 \times L_{\triangle CDE} \\ & = \dfrac12 \times 240 \\ & = 120~\text{cm}^2 \end{aligned}$$Jadi, luas daerah yang diarsir adalah $$\boxed{L_{\triangle ABD} + L_{\triangle DEF} = 480 + 120 = 600~\text{cm}^2}$$Jawaban B [collapse] Soal Nomor 23 Luas sebuah persegi panjang sama dengan $576$. Ukuran panjang dan lebarnya berupa bilangan bulat. Nilai terkecil yang mungkin dari keliling persegi panjang tersebut adalah $\cdots \cdot$ A. $80$ C. $100$ B. $96$ D. $120$ Pembahasan Keliling persegi panjang akan bernilai semakin kecil ketika ukuran panjang dan lebarnya sedekat mungkin, bahkan jika memungkinkan, panjang dan lebarnya sama sehingga menjadi sebuah persegi. Perhatikan bahwa $576 = 2^6 \times 3^2$. Perhatikan tabel berikut. Notasi $p-\ell$ menyatakan selisih ukuran panjang dan lebar. $$\begin{array}{cc} \hline p & \ell & p-\ell \\ \hline 192 & 3 & 189 \\ 64 & 9 & 55 \\ 32 & 18 & 14 \\ 24 & 24 & \color{blue}{0} \\ 16 & 36 & 20 \\ 8 & 72 & 64 \\ 4 & 144 & 140 \\ 2 & 288 & 286 \\ 1 & 576 & 575 \\ \hline \end{array}$$Tampak dari tabel di atas bahwa selisih terkecil tercapai ketika $p = 24$ dan $\ell = 24.$ Dengan demikian, keliling terkecilnya adalah $\boxed{2 \times 24 + 24 = 96}$ Jawaban B [collapse] Soal Nomor 24 Pada gambar di bawah, $ABCD$ adalah sebuah persegi. $E$ adalah titik pada $AD$ dan $F$ adalah titik pada $AB$, sehingga $DE = 2AE$ dan $AF = 2BF$. Perbandingan luas $\triangle CEF$ terhadap luas persegi $ABCD$ adalah $\cdots \cdot$ A. $5 11$ C. $7 18$ B. $5 18$ D. $11 18$ Pembahasan Misalkan panjang sisi perseginya adalah $a$ sehingga panjang sisi lainnya dapat kita tuliskan sebagai berikut. Untuk mencari luas $\triangle CEF$, kita harus mencari luas persegi $ABCD$, kemudian dikurangi luas 3 buah segitiga siku-siku lainnya. $$\begin{aligned} L_{\triangle CEF} & = L_{ABCD}-\leftL_{\triangle AEF} + L_{\triangle CDE} + L_{\triangle BCF}\right \\ & = AB \times BC-\dfrac12 \times \leftAF \times AE + BF \times BC + DE \times DC\right \\ & = a \times a-\dfrac12 \times \left\left\dfrac23a \times \dfrac13a\right + \left\dfrac13a \times a\right + \left\dfrac23a \times a\right\right \\ & = a^2-\dfrac12 \times \left\dfrac29a^2 + \dfrac13a^2 + \dfrac23a^2\right \\ & = a^2-\dfrac12 \times \dfrac{11}{9}a^2 \\ & = a^2-\dfrac{11}{18}a^2 \\ & = \dfrac{7}{18}a^2 \end{aligned}$$Dengan demikian, perbandingan luas $\triangle CEF$ terhadap luas persegi $ABCD$ adalah $\boxed{\dfrac{7}{18}\color{blue}{a^2} \color{blue}{a^2} = 7 18}$ Catatan Untuk mempermudah menjelaskan kepada siswa, gunakan permisalan panjang sisi persegi berupa bilangan kelipatan 3, misalnya 3, 6, 9, dan seterusnya, karena akan mempermudah perhitungan nantinya. Jawaban C [collapse] Soal Nomor 25 Pecahan yang sesuai untuk daerah yang diarsir pada diagram petak berikut adalah $\cdots \cdot$ A. $\dfrac13$ C. $\dfrac16$ B. $\dfrac14$ D. $\dfrac{1}{12}$ Pembahasan Diagram terdiri dari 16 petak. Daerah yang diarsir terdiri dari 8 buah segitiga yang sama kongruen dengan panjang alas 1 dan tingginya juga 1. Luas segitiga itu adalah $L_{\triangle} = \dfrac12 \cdot 1 \cdot 1 = \dfrac12$. Karena ada 8 buah segitiga, maka luas arsir sama dengan $L_{\text{arsir}} = 8 \cdot \dfrac12 = 4$. Jadi, pecahan yang sesuai adalah $\boxed{\dfrac{4}{16} = \dfrac14}$ Jawaban B [collapse] Soal Nomor 26 Pada gambar di bawah, garis putus-putus horizontal memiliki jarak yang sama. Segitiga $ABE$ adalah segitiga sama sisi, sedangkan segitiga $ABC$ adalah segitiga siku-siku. Pernyataan berikut yang benar mengenai selisih luas segitiga $ADE$ dan $BCD$ adalah $\cdots \cdot$ selisihnya sama dengan luas segitiga $ABC$ selisihnya sama dengan luas segitiga $ABD$ selisihnya sama dengan $1,5$ kali luas segitiga $ABC$ selisihnya sama dengan $2$ kali luas segitiga $ABD$ Pembahasan Dari gambar, tampak bahwa $\triangle ABE$ dan $\triangle ABC$ memiliki panjang alas yang sama, yaitu $AB$, sedangkan tinggi $\triangle ABE$ sama dengan $2$ kali dari tinggi $\triangle ABC.$ Misalkan luas $\triangle ABC = x$, berarti luas $\triangle ABE = 2x.$ Oleh karena itu, kita peroleh $$\begin{aligned} L_{\triangle ABE}-L_{\triangle ABC} & = 2x-x \\ L_{\triangle ADE} + \cancel{L_{\triangle ABD}}-\cancel{L_{\triangle ABD}}-L_{\triangle BCD} & = x \\ L_{\triangle ADE}-L_{\triangle BCD} & = x \end{aligned}$$Dari sini, dapat disimpulkan bahwa selisih luas segitiga $ADE$ dan $BCD$ sama dengan $x$, yaitu luas segitiga $ABC.$ Jawaban A [collapse] Soal Nomor 27 Sebanyak $12$ persegi yang identik diposisikan sedemikian sehingga membentuk persegi panjang berukuran $6 \times 2.$ Jika keliling persegi adalah $6$ cm, maka keliling persegi panjang yang terbentuk adalah $\cdots \cdot$ A. $20$ cm C. $30$ cm B. $24$ cm D. $36$ cm Pembahasan Dua belas persegi tersebut disusun seperti berikut. Diketahui keliling persegi = $6$ cm. Dari gambar di atas, tampak bahwa keliling persegi panjang sama dengan $16$ kali panjang sisi persegi. Dengan demikian, keliling persegi panjang itu adalah $6 \times 16 \div 4 = 24$ cm. Jawaban B [collapse] Soal Nomor 28 Setiap sisi dari persegi $RSTV$ memiliki panjang $8$ satuan. Titik $W$ berada pada $VR$ dan titik $Y$ berada pada $TS$ sedemikian sehingga terbentuk jajaran genjang $VWSY.$ Jika luas jajaran genjang itu sama dengan $16$ satuan persegi, maka panjang $VW$ adalah $\cdots$ satuan. A. 2 C. 4 B. 3 D. 6 Pembahasan Perhatikan bahwa $VW$ dapat dipandang sebagai alas jajaran genjang itu, sedangkan $VT$ atau $RS$ merupakan tingginya, yaitu $8$ satuan. Karena diketahui luas jajaran genjang sama dengan $16$ satuan persegi, diperoleh $$\begin{aligned} L_{VWSY} & = a \times t = VW \times VT\\ 16 & = VW \times 8 \\ VW & = 2. \end{aligned}$$Jadi, panjang $VW$ adalah $\boxed{2}$ satuan. Jawaban A [collapse] Baca Juga Soal dan Pembahasan – Geometri Bidang Datar Soal Nomor 29 Gambar berikut merupakan sebuah segitiga dan persegi yang beririsan dengan lingkaran. Semua bangun memiliki luas yang sama. Setengah daerah lingkaran tidak diarsir. Pecahan yang menunjukkan luas keseluruhan daerah yang tidak diarsir adalah $\cdots \cdot$ A. $\dfrac15$ C. $\dfrac35$ B. $\dfrac25$ D. $\dfrac45$ Pembahasan Misalkan $L_{\triangle} = L_{\text{O}} = L_{\square} = A.$ Karena luas daerah yang diarsir sama dengan luas setengah lingkaran, maka luas yang diarsir adalah $\dfrac12A.$ Dengan demikian, diperoleh $$\begin{aligned} \text{Luas Semua Bidang} & = L_{\triangle} + L_{\text{O}} + L_{\square}-L_{\text{arsir}} \\ & = A + A + A-\dfrac12A \\ & = \dfrac52A \end{aligned}$$Luas daerah yang tidak diarsir sama dengan $\dfrac52A-\dfrac12A=2A.$ Jadi, pecahan yang menunjukkan luas keseluruhan daerah yang tidak diarsir adalah $\boxed{\dfrac{L_{\text{tidak arsir}}}{L_{\text{semua bidang}}} = \dfrac{2A}{5/2A} = \dfrac45}$ Jawaban D [collapse] Soal Nomor 30 Perhatikan gambar berikut. Diketahui panjang $AD DB = 7 5$ dan $AE$ merupakan garis berat. Luas daerah yang diarsir adalah $\cdots \cdot$ A. $18~\text{cm}^2$ C. $24~\text{cm}^2$ B. $21~\text{cm}^2$ D. $30~\text{cm}^2$ Pembahasan Misalkan $CD$ dan $AE$ berpotongan di $O.$ Misalkan juga luas $\triangle AOC = x$ dan luas $\triangle AOD = y.$ $AE$ merupakan garis berat sehingga membagi dua sisi $BC$ sama panjang, seperti yang tampak pada gambar berikut. Perhatikan $\triangle ADC$ dan $\triangle BDC$ dengan alasnya berturut-turut $AD$ dan $DB.$ Karena kedua segitiga tersebut memiliki tinggi yang sama, maka luasnya sebanding dengan panjang alas. Dengan demikian, kita peroleh $$\begin{aligned} \dfrac{AD}{DB} & = \dfrac{L_{\triangle ADC}}{L_{\triangle BDC}} \\ \dfrac75 & = \dfrac{x + y}{9 + 16} \\ \dfrac{35}{\cancel{25}} & = \dfrac{x + y}{\cancel{25}} \\\ x+y & = 35 && \cdots 1 \end{aligned}$$Karena $E$ terletak tepat di tengah sisi $BC,$ maka $BE = EC.$ Dengan prinsip yang sama pada $\triangle ABE$ dan $\triangle ACE,$ diperoleh $$\begin{aligned} \dfrac{BE}{EC} & = \dfrac{L_{\triangle ABE}}{L_{\triangle ACE}} \\ 1 & = \dfrac{16 + y}{9 + x} \\ 9+x & = 16+y \\ x-y & = 7 && \cdots 2 \end{aligned}$$Dari persamaan $1$ dan $2$ di atas, diperoleh nilai $x = 21$ dan $y = 14.$ Jadi, luas daerah yang diarsir luas segitiga $AOC$ adalah $\boxed{21~\text{cm}^2}$ Jawaban B [collapse] Soal Nomor 31 Persegi panjang $ABCD$ berikut dibentuk dari lima persegi panjang lain yang identik. Berapa sentimeter persegikah luas dari persegi panjang $ABCD$ jika $BC = 1,5$ cm? A. $1,50~\text{cm}^2$ C. $3,75~\text{cm}^2$ B. $2,25~\text{cm}^2$ D. $4,50~\text{cm}^2$ Pembahasan Dari gambar tersebut, tampak bahwa panjang persegi panjangnya sama dengan 3 kali dari lebar. Jadi, lebar sisi yang pendek = $\dfrac13 \times 1,5 = 0,5~\text{cm}$, seperti yang tertulis pada gambar berikut. Dengan demikian, luas persegi panjang $ABCD$ adalah $$\begin{aligned} L_{ABCD} & = BC \times CD \\ & = 1,5 \times 0,5 + 1,5 + 0,5 \\ & = 1,5 \times 2,5 = 3,75~\text{cm}^2 \end{aligned}$$Jawaban C [collapse] Soal Nomor 32 Sebuah segitiga sama sisi dan persegi memiliki satu sisi yang saling bertindih sehingga membentuk pentagon segi lima dengan keliling $18$ cm. Keliling segitiga sama sisi tersebut adalah $\cdots \cdot$ A. $9,0~\text{cm}$ C. $10,2~\text{cm}$ B. $9,6~\text{cm}$ D. $10,8~\text{cm}$ Pembahasan Sketsa gambarnya seperti berikut. Segi lima tersebut memiliki lima sisi yang sama panjang. Karena kelilingnya $18$ cm, maka itu berarti $$\begin{aligned} 5 \times s & = 18 \\ s & = 18 \div 5 \\ s & = 3,6~\text{cm} \end{aligned}$$Dengan demikian, keliling segitiga sama sisi tersebut adalah $$\begin{aligned} k_{\triangle} & = 3 \times s \\ & = 3 \times 3,6 \\ & = 10,8~\text{cm} \end{aligned}$$Jadi, keliling segitiga sama sisi tersebut adalah $\boxed{10,8~\text{cm}}$ Jawaban D [collapse] Soal Nomor 33 Sebuah persegi panjang berukuran $5 \times 4$ dipotong menjadi persegi kecil berukuran $1 \times 1$ seperti yang tampak pada gambar. Perbandingan keliling daerah yang diarsir pada bagian luar dan bagian dalam adalah $\cdots \cdot$ A. $5 3$ C. $9 5$ B. $7 4$ D. $14 9$ Pembahasan Perhatikan gambar berikut. Pada bagian luar, terdapat $2 \times 5 + 4 = 18$ sisi yang tampak. Pada bagian dalam, terdapat $2 \times 3 + 2 = 10$ sisi yang tampak. Karena setiap sisinya sama panjang, maka perbandingan kelilingnya sama dengan $\boxed{18 10 = 9 5}$ Jawaban C [collapse] Soal Nomor 34 Perhatikan gambar persegi $ABCD$ berikut. Luas daerah yang diarsir adalah $\cdots \cdot$ A. $\dfrac{221}{35}$ D. $\dfrac{229}{35}$ B. $\dfrac{223}{35}$ E. $\dfrac{231}{35}$ C. $\dfrac{227}{35}$ Pembahasan Karena $ABCD$ merupakan persegi, maka $AB = AD = 4.$ Misalkan persegi ini kita letakkan pada bidang koordinat sedemikian sehingga $$\begin{aligned} A & = 0, 0 \\ B & = 0, 4 \\ C & = 4, 4 \\ D & = 4, 0 \\ M & = 0, 2 \\ N & = 3, 0 \end{aligned}$$Ruas garis $AC$ dapat direpresentasikan oleh persamaan $y = x$ Persamaan garis $MN$ melalui $0, 2$ dan $3, 0$ adalah $2x + 3y = 6.$ Dengan demikian, titik potong kedua garis tersebut misalnya diberi nama titik $P$ dapat kita tentukan dengan metode substitusi. $$\begin{aligned} 2x + 3\color{red}{y} & = 6 \\ 2x + 3x & = 6 \\ 5x & = 6 \\ x & = \dfrac65 \end{aligned}$$Akibatnya, $y = \dfrac65.$ Jadi, koordinat titik potong kedua garis itu adalah $P\left\dfrac65, \dfrac65\right.$ Selanjutnya, persamaan garis $BN$ melalui $0,4$ dan $3, 0$ adalah $4x + 3y = 12.$ Dengan demikian, titik potong garis tersebut dengan garis $y=x$ misalnya diberi nama titik $Q$ dapat kita tentukan dengan metode substitusi. $$\begin{aligned} 4x + 3\color{red}{y} & = 12 \\ 4x + 3x & = 12 \\ 7x & = 12 \\ x & = \dfrac{12}{7} \end{aligned}$$Akibatnya, $y = \dfrac{12}{7}.$ Jadi, koordinat titik potong kedua garis itu adalah $Q\left\dfrac{12}{7}, \dfrac{12}{7}\right.$ Luas daerah yang diarsir dapat kita tentukan sebagai berikut. $$\begin{aligned} L_{\text{arsir}} & = L_{\triangle BCQ} + L_{\triangle AMP} + L_{\triangle PQN} \\ & = L_{\triangle BCQ} + \leftL_{\triangle MAN} + L_{\triangle AQN}-2 \cdot L_{\triangle APN}\right \\ & = \dfrac{4 \cdot \frac{16}{7}}{2} + \dfrac{3 \cdot 2}{2} + \dfrac{3 \cdot \frac{12}{7}}{2}-2 \cdot \dfrac{3 \cdot \frac65}{2} \\ & = \dfrac{32}{7} + 3 + \dfrac{18}{7}-\dfrac{18}{5} \\ & = \dfrac{250}{35} + \dfrac{105}{35}-\dfrac{126}{35} \\ & = \dfrac{229}{35} \end{aligned}$$Jadi, luas daerah yang diarsir adalah $\boxed{\dfrac{229}{35}}$ Jawaban D [collapse] Bagian Uraian Soal Nomor 1 Tentukan keliling dan luas dari bangun datar gabungan berikut. Pembahasan Perhatikan gambar berikut. Keliling bangun datar adalah jumlah dari semua panjang sisinya. Pindahkan sisi yang diberi warna merah untuk membentuk persegi panjang utuh. Dengan demikian, kita peroleh $$\begin{aligned} k & = 2 \times 8 + 10 + 3 + 3 + 3 + 3 \\ & = 36 + 12 \\ & = 48 \end{aligned}$$Luas bangun gabungan sama dengan luas persegi panjang besar dikurangi dengan luas dua persegi panjang kecil di dalamnya. $$\begin{aligned} L & = 8 \times 10-3 \times 2 + 3 \times 4 \\ & = 80-18 = 62 \end{aligned}$$Jadi, keliling bangun gabungan pada gambar adalah $\boxed{48}$ satuan panjang, sedangkan luasnya adalah $\boxed{62}$ satuan luas. [collapse] Soal Nomor 2 Perhatikan gambar persegi panjang $ABCD$ berikut. $E$ adalah titik tengah $AD.$ $G$ adalah titik tengah $BC.$ $H$ adalah titik tengah $CD.$ $F$ terletak pada sisi $AB.$ Jika luas persegi panjang tersebut adalah $100~\text{cm}^2$, tentukan luas daerah yang diarsir. Pembahasan Tarik garis dari titik $F$ ke titik $D$ dan $C$ seperti gambar berikut. Karena $E$ di tengah $AD$, maka luas daerah 1 dan 2 sama. Karena $H$ di tengah $DC$, maka luas daerah 3 dan 4 sama. Karena $G$ di tengah $BC$, maka luas daerah 5 dan 6 sama. Dengan demikian, $$\begin{aligned} L_1 + L_2 + L_3 + L_4 + L_5 + L_6 & = 100 \\ 2 \times L_1 + L_4 + L_5 & = 100 \\ L_1 + L_4 + L_5 & = \dfrac12 \times 100 \\ & = 50 \end{aligned}$$Jadi, luas daerah yang diarsir adalah $\boxed{50~\text{cm}^2}$ [collapse] Soal Nomor 3 $ABCD$ adalah sebuah persegi panjang. Titik $E$ dan $F$ berturut-turut terletak pada sisi $AB$ dan $BC.$ Berapakah luas daerah yang diarsir? Pembahasan Perhatikan gambar berikut. Letakkan titik $P, Q,$ dan $R$ seperti gambar di atas. Perhatikan bahwa luas $\triangle ADF$ sama dengan luas setengah persegi panjang, begitu juga dengan luas $\triangle CDE.$ Untuk menyingkat penulisan, kita misalkan bahwa $$\begin{aligned} L_{\triangle ADP} & = L1 \\ L_{\triangle FQR} & = L2 \\ L_{\triangle CDR} & = L3 \\ L_{\triangle EPQ} & = L4 \end{aligned}$$Oleh karena itu, kita peroleh $$\begin{aligned} L_{\triangle ADF} + L_{\triangle CDE} & = L_{ABCD} \\ L1 + L2 + L_{\text{arsir}} + L3 + L4 + L_{\text{arsir}} & = L1 + L2 + L3 + L4 + L_{\text{arsir}} + 15 + 25 + 37 \\ \cancel{L1 + L2 + L3 + L4} + 2 \times L_{\text{arsir}} & = \cancel{L1 + L2 + L3 + L4} + L_{\text{arsir}} + 77 \\ 2 \times L_{\text{arsir}} & = L_{\text{arsir}} + 77 \\ L_{\text{arsir}} & = 77. \end{aligned}$$Jadi, luas daerah yang diarsir tersebut adalah $\boxed{77~\text{cm}^2}$ [collapse] Soal Nomor 4 Sebuah persegi panjang dibentuk dari $1221$ persegi yang panjang sisinya $1$ cm. Carilah nilai minimum dari keliling persegi panjang tersebut dalam satuan cm. Pembahasan Persegi panjang tersebut akan memiliki keliling minimum jika ukuran panjang dan lebarnya sedekat mungkin, bahkan jika memungkinkan, panjang dan lebarnya sama sehingga menjadi sebuah persegi. Perhatikan bahwa $1221 = 3 \times 11 \times 37.$ Dari tiga bilangan tersebut, perkalian dua bilangan yang hasilnya mendekati bilangan sisanya adalah $3 \times 11 = 33$ dengan $37$ berselisih $4$. Jadi, ukuran persegi panjang itu adalah $33 \times 37$ atau kebalikannya sehingga keliling minimumnya adalah $\boxed{2 \times 33 + 37 = 140~\text{cm}}$ [collapse] Soal Nomor 5 Segitiga sama kaki hijau memiliki panjang alas $b$ satuan, sedangkan trapesium biru memiliki panjang salah satu sisi sejajar $a$ satuan. Jika kedua bangun tersebut memiliki luas yang sama, berapakah perbandingan nilai $b$ dan $a$? Pembahasan Tarik garis tinggi pada segitiga sama kaki tersebut seperti yang tampak pada gambar. Misalkan $t$ adalah tinggi segitiga, sekaligus tinggi trapesium. Karena kedua bangun memiliki luas yang sama, maka kita peroleh $$\begin{aligned} L_{\text{segitiga}} & = L_{\text{trapesium}} \\ {\color{blue}{\dfrac12}} \cdot b \cdot \color{red}{t} & = {\color{blue}{\dfrac12}} \cdot \lefta + \dfrac12b + a\right \cdot \color{red}{t} \\ b & = 2a + \dfrac12b \\ \dfrac12b & = 2a \\ \dfrac14b & = a \\ \dfrac{b}{a} & = \dfrac41 \end{aligned}$$Jadi, perbandingan nilai $b$ dan $a$ adalah $\boxed{4 1}$ [collapse] Soal Nomor 6 KSN-P SMA Tahun 2021 Titik $P$ terletak di dalam suatu segi empat dan dihubungkan dengan titik tengah setiap sisi segi empat sehingga membagi segi empat tersebut ke dalam 4 daerah yang luasnya dinyatakan dengan bilangan yang terdapat pada masing-masing daerah. Tentukan luas dari daerah yang belum diketahui. Pembahasan Namai setiap titik sudut yang ada pada gambar tersebut, kemudian tarik garis dari titik sudut segi empat ke titik $P.$ Perhatikan bahwa $B$ terletak di tengah $AC$ sehingga $L_{\triangle ABP} = L_{\triangle BCP} = x.$ Dengan prinsip yang serupa, kita peroleh $$\begin{aligned} L_{\triangle CDP} & = L_{\triangle DEP} = y \\ L_{\triangle EFP} & = L_{\triangle FGP} = z \\ L_{\triangle GHP} & = L_{\triangle AHP} = w \end{aligned}$$Berdasarkan luas daerah yang sudah diketahui pada gambar, kita juga peroleh $$\begin{cases} x + y & = 75 && \cdots 1 \\ y + z & = 72 && \cdots 2 \\ w + z & = 85 && \cdots 3 \end{cases}$$Kita akan mencari nilai $x + w,$ yaitu dengan menjumlahkan persamaan $1$ dan $3,$ kemudian dikurangi persamaan $2.$ $$\begin{aligned} x + y + w + z-y+z & = 75 + 85-72 \\ x + w & = 88 \end{aligned}$$Jadi, luas daerah yang belum diketahui itu adalah $\boxed{88}$ [collapse]
Perhatikangambar di bawah ini! Luas dan keliling bangun di atas adalah . HOTS a. 236 cm² dan 100 cm b. 346 cm² dan 98 cm c. 546 cm² dan 98 cm d. 564 cm² dan 100 cm. SD Perhatikan gambar di bawah ini! Luas dan
Setelah sebelumnya kita membahas Bangun Datar, dan sifat-sifatnya, kali ini pembahasan kita adalah tentang rumus bangun datar yaitu cara menghitung keliling dan luasnya. Untuk lebih jelasnya mengenai rumus luas dan keliling bangun datar yang terdiri dari rumus persegi, rumus persegi panjang, rumus segitiga, rumus lingkaran, rumus jajaran genjang, rumus belah ketupat, rumus trapesium, rumus layang-layang ada di bawah ini. Rumus Persegi Keterangan s = panjang sisi persegi Rumus Persegi Panjang Keterangan p = panjang persegi panjang, l = lebar persegi panjang Rumus Segitiga Keterangan Keliling = jumlah semua sisi a = panjang alas segitiga t = tinggi segitiga Cara mencari panjang sisi miring segitiga siku-siku dengan menggunakan rumus Pythagoras a² + b² = c² Cara menghitung luas segitiga juga bisa menggunakan rumus ini Luas = ½ x a x t Rumus Lingkaran Keterangan r = jari-jari, d = diameter 22 π pi = — atau 3,14 7 Rumus Jajaran Genjang Keterangan a = panjang alas jajaran genjang, t = tinggi jajaran genjang Rumus Belah Ketupat Keterangan Keliling = jumlah semua sisi Cara menghitung luas belah ketupat juga bisa menggunakan rumus ini Luas = ½ x diagonal d 1 x diagonal d 2 Rumus Trapesium Keterangan Keliling = jumlah semua sisi Sisi bawah s1 dan sisi atas s2 adalah sisi-sisi sejajar pada trapesium t = tinggi trapesium Cara menghitung luas trapesium juga bisa menggunakan rumus ini Luas = ½ x s1 + s2 x t Rumus Layang-layang Keteranagan Keliling = 2p + 2l = 2 x p + l p = panjang sisi layang-layang, l = lebar sisi layang-layang Cara menghitung luaslayang-layang juga bisa menggunakan rumus ini Luas = ½ x diagonal d 1 x diagonal d 2 Itulah Rumus Keliling dan Luas Bangun Datar Lengkap beserta Gambar. Semoga bermanfaat. Dan berikut ini adalah Kumpulan Soal Bangun Datar Lengkap disertai file download yang bisa digunakan untuk latihan di rumah.
DYqZI.
  • 17xe3acnmo.pages.dev/260
  • 17xe3acnmo.pages.dev/781
  • 17xe3acnmo.pages.dev/769
  • 17xe3acnmo.pages.dev/340
  • 17xe3acnmo.pages.dev/2
  • 17xe3acnmo.pages.dev/228
  • 17xe3acnmo.pages.dev/708
  • 17xe3acnmo.pages.dev/605
  • luas dan keliling pada bangun di bawah adalah